考虑不确定性时结构损伤的扩展卡尔曼滤波反演分析
Inversion analysis of structural damage under model and measurement uncertainties via extended Kalman filter
针对工程结构中存在的观测与模型不确定性,本文将扩展卡尔曼滤波方法与遗传算法相结合,提出了一种用于处理不确定性的结构损伤参数区间反演算法。利用扩展卡尔曼滤波处理概率型输出不确定性,得到损伤参数等状态变量的估计值;同时利用遗传算法考虑区间型模型不确定因素的影响,将区间识别问题转换为状态变量上下限的优化求解,最终得到损伤参数的区间估计。数值算例表明本文方法不仅可以有效识别损伤位置与程度,还能对各种不确定性因素的影响程度进行准确的估计。
onsidering the measurement and model uncertainty in engineering structure, an interval inversion method of structure damage is proposed based on extended Kalman filter and genetic algorithm. The optimal estimation of state vector is obtained by extended Kalman filter under stochastic measurement uncertainty, while the model uncertainty is described by interval variables and genetic algorithm is used to translate the interval estimation to optimal solution of upper and lower bounds of state vector. The numerical cases show that the identified interval of damage parameters in the proposed method can indicate structure damage accurately, and the effect of different uncertainty on damage identification can be estimated correctly.
张纯、万昶
力学工程基础科学计算技术、计算机技术
工程力学扩展卡尔曼滤波损伤识别不确定性反演分析
engineering mechanicsextended Kalman filterdamage identificationuncertaintyinversion analysis
张纯,万昶.考虑不确定性时结构损伤的扩展卡尔曼滤波反演分析[EB/OL].(2016-01-22)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201601-475.点此复制
评论