|国家预印本平台
首页|对话理解中的槽填充

对话理解中的槽填充

Slot Filling in Dialogue Understanding

中文摘要英文摘要

采用条件随机场模型和几种神经网络模型来解决槽填充问题,探究了这些模型在不同语料条件下的效果,并将句子内部特征和对话历史特征引入槽填充问题。实验结果表明,模型的槽填充效果和语料规模有关,在语料较小的情况下,条件随机场模型的效果更好,当语料足够充分的时候,神经网络模型的效果可以超过条件随机场模型,实验也显示句内特征和对话历史特征可以提高槽填充效果。

In this paper, the CRF model and several NN models are proposed to solve slot filling problem. We explore the effect of these models based on different corpus, and sentence internal features and history feature are introduced into these models. Results of experiments show, the effect of CRF and NN models in slot filling bases on the size of corpus. When the corpus is small, the CRF model performs better. When the corpus is big enough, the NN model's effect can exceed the CRF model. Experiments also show that the sentence internal feature and dialogue's history feature can improve the effect of slot filling.

赵晗、王小捷

计算技术、计算机技术

自然语言处理对话理解槽填充循环神经网络条件随机场

Nature language progressDialogue understandingSlot fillingRNNCRF

赵晗,王小捷.对话理解中的槽填充[EB/OL].(2016-12-09)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201612-208.点此复制

评论