|国家预印本平台
首页|Commuting Toeplitz operators on Cartan domains of type IV and moment maps

Commuting Toeplitz operators on Cartan domains of type IV and moment maps

Commuting Toeplitz operators on Cartan domains of type IV and moment maps

来源:Arxiv_logoArxiv
英文摘要

Let us consider, for $n \geq 3$, the Cartan domain $\mathrm{D}_n^{\mathrm{IV}}$ of type IV. On the weighted Bergman spaces $\mathcal{A}^2_\lambda(\mathrm{D}_n^{\mathrm{IV}})$ we study the problem of the existence of commutative $C^*$-algebras generated by Toeplitz operators with special symbols. We focus on the subgroup $\mathrm{SO}(n) \times \mathrm{SO}(2)$ of biholomorphisms of $\mathrm{D}_n^{\mathrm{IV}}$ that fix the origin. The $\mathrm{SO}(n) \times \mathrm{SO}(2)$-invariant symbols yield Toeplitz operators that generate commutative $C^*$-algebras, but commutativity is lost when we consider symbols invariant under a maximal torus or under $\mathrm{SO}(2)$. We compute the moment map $\mu^{\mathrm{SO}(2)}$ for the $\mathrm{SO}(2)$-action on $\mathrm{D}_n^{\mathrm{IV}}$ considered as a symplectic manifold for the Bergman metric. We prove that the space of symbols of the form $a = f \circ \mu^{\mathrm{SO}(2)}$, denoted by $L^\infty(\mathrm{D}_n^{\mathrm{IV}})^{\mu^{\mathrm{SO}(2)}}$, yield Toeplitz operators that generate commutative $C^*$-algebras. Spectral integral formulas for these Toeplitz operators are also obtained.

Monyrattanak Seng、Raul Quiroga-Barranco

数学

Monyrattanak Seng,Raul Quiroga-Barranco.Commuting Toeplitz operators on Cartan domains of type IV and moment maps[EB/OL].(2022-05-13)[2025-07-25].https://arxiv.org/abs/2205.06786.点此复制

评论