基于语义描述的过程纹理生成
Procedural Texture Generation Based on Semantic Descriptions
过程纹理在通常情况下是由一系列数学模型生成的,并且对渲染游戏和动画中的自然场景元素非常有效,例如渲染木材,大理石,石头和其他的一些材质等。尽管直觉上用一些语义属性词汇可以描述过程纹理,然而并没有一种可以把过程纹理生成模型以及这些生成模型的参数和这些纹理描述词汇联系起来的方法。本文提出了一种新的架构,根据输入的语义描述词来生成符合这些描述的过程纹理。首先,文章通过进行心理物理学实验,公布了一系列用于描述过程纹理的语义属性词汇;然后利用多标签学习的方法为更多没有语义标注的纹理添加这些语义属性。本文整理了一个带有语义属性标注的过程纹理数据集,并且在这个数据集的基础上学习得到一个低维的语义纹理空间。最后,对于一组语义描述的输入,本文可以在这个语义空间中找到符合这组描述的生成模型和合适的参数,然后用这个模型和这些参数去生成符合这组语义描述的过程纹理。实验结果显示,这个架构非常有效,并且可以生成符合输入的语义描述的过程纹理。
Procedural textures are normally generated from mathematical models and have been widely used in computer games and animations for efficient rendering of natural elements, such as wood, marble, stone and other materials. Although the intuitive way to describe procedural texture is to use semantic attributes, there is no connection between procedural models, model parameters and texture semantic descriptions. In this paper, we propose a novel framework for generating procedural textures according to semantic descriptions. First a vocabulary of semantic attributes is collected for describing procedural textures based on extensive psychophysical experiments. Then a multi-label learning method is employed to label more new textures using the semantic attributes. We construct a procedural texture dataset with semantic attributes and further learn a low-dimensional semantic texture space. Finally, for a set of input semantic descriptions, we are able to find a generation model with proper parameters in this space. This model can be used to generate procedural textures that retain the input semantic attributes. Experimental results show that the proposed framework is effective and the generated procedural textures are correlated with the corresponding input semantic descriptions.
孙鑫、董军宇、刘君、王丽娜
计算技术、计算机技术
过程纹理语义属性生成多标签学习
Procedural textureSemantic attributesGenerationMulti-label learning
孙鑫,董军宇,刘君,王丽娜.基于语义描述的过程纹理生成[EB/OL].(2016-05-17)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201605-542.点此复制
评论