|国家预印本平台
首页|一种新的自底向上的注意信息提取算法

一种新的自底向上的注意信息提取算法

Novel Algorithm for Extracting Bottom-Up Attention Information

中文摘要英文摘要

借鉴心理学中有关视觉注意的研究成果,提出了一种新的自底向上的注意信息提取算法。自底向上的注意信息由图像中每个点对应区域的显著性构成,区域的尺度自适应于局部特征的复杂度。新的显著性度量标准综合考虑了局部复杂度、统计不相似和初级视觉特征这三个方面的特性。显著区域在特征空间和尺度空间中同时显著。获取的自底向上的注意信息具有旋转、平移、比例缩放不变性和一定的抗噪能力。基于这种算法开发出了一个注意模型,将其应用于多幅自然图像的实验证明了算法的有效性。

Inspired by research of visual attention in psychology, a novel algorithm for extracting bottom-up attention information is proposed in the paper. Bottom-up attention information is composed by saliency of certain regions correspond to each point in image, and scale of the region varies with complexity of local features adaptively. New saliency metric is defined as a product of three terms: local complexity, statistical dissimilarity and early visual features. Salient regions are salient both in feature space and over scale. The extracted bottom-up attention information is invariant to image scale, rotation and translation, and is shown to be robust to noise. An attention model is developed based on this algorithm. Experiments results with natural images demonstrate its effectiveness.

罗四维、廖灵芝、田媚

计算技术、计算机技术

视觉注意视觉显著性显著区域

visual attentionvisual saliencysalient region

罗四维,廖灵芝,田媚.一种新的自底向上的注意信息提取算法[EB/OL].(2007-01-09)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/200701-95.点此复制

评论