基于自适应模糊系统加动量项的BP神经网络的铜转炉模型
he copper converter model based on BP neural network with adaptive fuzzy system and momentum term
基于某PS转炉炼铜厂稳定的生产实践数据和BP神经网络,并结合模糊系统,建立了可预测PS转炉渣中铜含量和四氧化三铁的数学模型。此模型弥补了传统BP神经网络易陷入局部极小点、训练不收敛的缺点,再结合模糊推理功能,运用模糊逻辑增强型BP算法,从而增强了BP神经网络收敛速度,提高了模型预报结果的准确性。通过预测结果与实际生产结果的对比,表明误差在一个可允许的范围内。利用模型良好的预测功能,可优化转炉炼铜工艺的炉料配比,达到节省能源以及降低渣中铜含量和四氧化三铁的目的。
he copper coverter model based on the production data ,the BP neural network and the adaptive fuzzy system,the model can forcast the content of magnetic oxide and copper in the slag.This model makes up for the shortcomings of the traditional BP neural network that easy to be immersed in the minimum point and the training without convergence.This model combines fuzzy inference function in order to Strengthening BP algorithm.So it improved the rate of BP algorithm and the accuracy of prediction is strengthened.By comparing the predicted results with the actual production results. It shows that the range of error is reasonable.Through the fine prediction function, the model can optimize the charge composition of the production of copper smelting converter.It not only savesthe sources of energybut also ruduce the content of magnetic oxide and copper in the slag.
张利伟、曹战民
有色金属冶炼自动化技术、自动化技术设备计算技术、计算机技术
PS转炉BP算法加动量项模糊系统
he copper coverterBP neural networkthe momentum termthe fuzzy system
张利伟,曹战民.基于自适应模糊系统加动量项的BP神经网络的铜转炉模型[EB/OL].(2017-11-28)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/201711-209.点此复制
评论