|国家预印本平台
首页|协同过滤推荐中一种改进的信息核提取方法

协同过滤推荐中一种改进的信息核提取方法

中文摘要英文摘要

推荐系统(recommender systems,RS)帮助用户在海量的数据资源中找到感兴趣的信息,提供准确的个性化推荐。而基于信息核的推荐算法能在较大程度上降低推荐过程中的时间花费。针对协同过滤推荐算法中存在的可扩展性问题,在原有基于频率(frequency-based,FB)和排名(rank-based,RB)的信息核提取方法的基础上,提出了改进的提取信息核方法IFB(IFrequency-based)和IRB(IRank-based,IRB),在寻找最相似邻居环节中提出了一个优化集的概念,在优化集上为每个用户寻找最相似的邻居。从实验结果看出,通过所提方法能够得到更加准确的推荐结果,有效降低了绝对平均误差(MAE),同时具有更高的准确率和召回率,推荐效果更优。

Recommender systems (RS) help users to find interesting information in plenty of data resources, and provide accurate personalized recommendation. While the recommendation algorithm based on information core can greatly reduce the time cost in the recommendation process. Aiming at the scalability problem in collaborative filtering recommendation algorithm, On the basis of the original information core extraction method based on frequency (frequency-based, FB) and ranking (rank-based, RB) , this paper proposes an improved extraction information core method IFB (IFrequency-based) and IRB(IRank-based) . When in search of the most similar neighbors, we proposed a concept : optimization set, and found the most similar neighbors for each user on this set. The experimental results showed that this method can get more accurate recommendation results, and reduce the mean average absolute error(MAE) effectively. At the same time, it has higher precision and recall, so it has better recommendation effect.

杨军、张文静、李锦屏

10.12074/201811.00160V1

计算技术、计算机技术

推荐系统协同过滤信息核

杨军,张文静,李锦屏.协同过滤推荐中一种改进的信息核提取方法[EB/OL].(2018-11-29)[2025-08-02].https://chinaxiv.org/abs/201811.00160.点此复制

评论