|国家预印本平台
首页|多维离散Poisson方程的矩阵―数组形式及其可解性的判定

多维离散Poisson方程的矩阵―数组形式及其可解性的判定

Matrix-array Form for the Multidimensional Discrete Poisson Equation and its Solvability Criterion

中文摘要英文摘要

本文首次定义了方阵与多维数组的一种乘法,进而将定义于规则区域内的多维离散Poisson方程转变成一种包含一系列小矩阵的矩阵―数组方程的形式。由数学归纳法证明,该矩阵―数组方程可以利用Kronecker和转变成常见的线性代数方程组的形式,即AX=b。提出并证明一个定理:矩阵A的特征值及相应的特征向量可以直接通过包含于矩阵―数组方程中的那些小矩阵的特征值及相应的特征向量计算得到。根据这一定理,给出了矩阵―数组方程可解性的一种判定准则。最后将这一判定准则应用于一个实际问题,并深入讨论由上述定理得到的一个启示。

he multidimensional discrete Poisson equation (MDPE) frequently encountered in science and engineering can be expressed, in many cases, as a brief matrix-array equation firstly defined in this paper. This new-style equation consists of a series of small matrices and can be transformed using the Kronecker sum into a familiar system of linear algebraic equations, AX=b. Then it is proved that the eigenvalues and corresponding eigenvectors of A can be obtained directly from those of these small matrices consisting in that matrix-array equation. Based on this connection, a solvability criterion for the matrix-array equation is proposed. Finally, an application of this criterion is carried out, and an inspiration from the above connection are presented and analyzed.

王通、葛耀君、曹曙阳

数学

应用数学矩阵―数组方程多维离散泊松方程可解性Kroneker积特征值特征向量

Matrix-array equationMultidimensional discrete Poisson equationSolvability criterionKronecker sumEigenvalueEigenvector

王通,葛耀君,曹曙阳.多维离散Poisson方程的矩阵―数组形式及其可解性的判定[EB/OL].(2011-09-02)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/201109-64.点此复制

评论