|国家预印本平台
首页|On the Selmer groups and Mordell-Weil groups of elliptic curves $ y^{2} = x (x \pm p) (x \pm q) $ over imaginary quadratic number fields of class number one

On the Selmer groups and Mordell-Weil groups of elliptic curves $ y^{2} = x (x \pm p) (x \pm q) $ over imaginary quadratic number fields of class number one

On the Selmer groups and Mordell-Weil groups of elliptic curves $ y^{2} = x (x \pm p) (x \pm q) $ over imaginary quadratic number fields of class number one

来源:Arxiv_logoArxiv
英文摘要

Let $ p $ and $ q $ be odd prime numbers with $ q - p = 2, $ the $\varphi -$Selmer groups, Shafarevich-Tate groups ($ \varphi - $ and $ 2-$part) and their dual ones as well the Mordell-Weil groups of elliptic curves $ y^{2} = x (x \pm p) (x \pm q) $ over imaginary quadratic number fields of class number one are determined explicitly in many cases.

Xiumei Li

数学

Xiumei Li.On the Selmer groups and Mordell-Weil groups of elliptic curves $ y^{2} = x (x \pm p) (x \pm q) $ over imaginary quadratic number fields of class number one[EB/OL].(2012-07-02)[2025-07-16].https://arxiv.org/abs/1207.0287.点此复制

评论