Donaldson-Thomas theory of $[\mathbb{C}^2/\mathbb{Z}_{n+1}]\times \mathbb{P}^1$
Donaldson-Thomas theory of $[\mathbb{C}^2/\mathbb{Z}_{n+1}]\times \mathbb{P}^1$
We study the relative orbifold Donaldson-Thomas theory of $[\mathbb{C}^2/\mathbb{Z}_{n+1}]\times \mathbb{P}^1$. We establish a correspondence between the DT theory relative to 3 fibers to quantum multiplication by divisors in the Hilbert scheme of points on $[\mathbb{C}^2/\mathbb{Z}_{n+1}]$. This determines the whole theory if a further nondegeneracy condition is assumed. The result can also be viewed as a crepant resolution correspondence to the DT theory of $\mathcal{A}_n\times \mathbb{P}^1$.
Zijun Zhou
数学
Zijun Zhou.Donaldson-Thomas theory of $[\mathbb{C}^2/\mathbb{Z}_{n+1}]\times \mathbb{P}^1$[EB/OL].(2015-10-03)[2025-07-09].https://arxiv.org/abs/1510.00871.点此复制
评论