基于校园时空数据的朋友关系特征挖掘
Mining Friendships Features Based on Campus Spatio-temporal Data
高速发展的校园网络提供了海量的隐含时空属性的学生行为特征数据,然而现有的挖掘方法大多只针对校园消费数据特征进行低维度分析,难以覆盖时空属性维度。针对以上问题,本文提出了一种基于二分网络的朋友关系构建及行为特征挖掘方法。该方法针对校园时空数据的特点构建二分网络,采用假设检验的方法对学生共现是否源于随机相遇进行统计验证,得到学生朋友关系网络,分析学生行为特征信息。实验结果表明,该方法可以有效挖掘学生间的朋友关系,对高校的管理和决策起到重要参考作用。
he rapid development of campus network provides a large amount of data of students\'behavior characteristics based on spatio-temporal data. However, most of the existing mining methods only analyze the characteristics of campus consumption data in low dimensions, and it is difficult to cover the dimension of spatio-temporal attributes. In order to solve the above problems, this paper proposes a method of building friendships and mining behavior characteristics based on dichotomy network. This method constructs a bipartite network according to the characteristics of campus spatio-temporal data, uses hypothesis test method to verify whether students\'co-occurrence originates from random encounters, obtains the student-friend relationship network, and analyses the information of students\' behavior characteristics. The experimental results show that this method can effectively mine the friendship among students and play an important reference role in the management and decision-making of colleges and universities.
颉夏青、许晋、吴旭、张凤
教育科学、科学研究计算技术、计算机技术
计算机技术校园时空数据朋友关系行为特征二分网络
computer technologycampus spatiotemporal datafriendshipsbehavioral featuresbipartite network
颉夏青,许晋,吴旭,张凤.基于校园时空数据的朋友关系特征挖掘[EB/OL].(2019-01-18)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201901-116.点此复制
评论