Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress
Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress
Abstract Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e. tachyzoites) and for establishing chronic infection (i.e. bradyzoites). Calcium ion (Ca2+) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress and cell invasion. However, the roles of Ca2+ signaling pathways in bradyzoites remain largely unexplored. Here we show that Ca2+ responses are highly restricted in bradyzoites and that they fail to egress in response to agonists. Development of dual-reporter parasites revealed dampened calcium responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca2+ imaging demonstrated lower Ca2+ basal levels, reduced magnitude, and slower Ca2+ kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with down-regulation of calcium ATPases involved in intracellular Ca2+ storage in the endoplasmic reticulum (ER) and acidocalcisomes. Once liberated from cysts by trypsin digestion, bradyzoites incubated in glucose plus calcium rapidly restored their intracellular Ca2+ and ATP stores leading to enhanced gliding. Collectively, our findings indicate that intracellular bradyzoites exhibit dampened Ca2+ signaling and lower energy levels that restrict egress, and yet upon release they rapidly respond to changes in the environment to regain motility.
Brown Kevin M.、Sibley L. David、Fu Yong、Jones Nathaniel G.、Moreno Silvia N. J.
Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineDepartment of Molecular Microbiology, Washington University in St. Louis, School of MedicineDepartment of Molecular Microbiology, Washington University in St. Louis, School of MedicineDepartment of Molecular Microbiology, Washington University in St. Louis, School of MedicineCenter for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia
细胞生物学生理学生物化学
tissue cystchronic infectionmicroneme secretioncalcium signalingcalcium ATPasesexocytosismotilitydormancylatencyreactivation
Brown Kevin M.,Sibley L. David,Fu Yong,Jones Nathaniel G.,Moreno Silvia N. J..Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress[EB/OL].(2025-03-28)[2025-05-06].https://www.biorxiv.org/content/10.1101/2021.05.17.444531.点此复制
评论