基于最大化间隔准则和成对约束的鲁棒半监督聚类方法
Robust Semi-supervised Clustering Algorithm Based on the Maximum Margin Principle and Pairwise Constraints
针对现有的半监督最大间隔聚类算法当真实的不同类别中有不少样本非常相似时,对违反成对约束的聚类结果不敏感,而难以提高聚类准确度的问题,提出了一种新的半监督最大间隔聚类算法。首先,基于最大化间隔准则设计了一种鲁棒的成对约束的损失函数,即使在真实的不同类别中有不少样本非常相似的复杂情形中,其仍然能有效地检测不满足成对约束的聚类结果,并提供相应的惩罚,以较好地提高聚类的性能。其次,基于约束凹凸过程设计了一种迭代算法求解形成的优化问题。实验结果表明,该算法能有效克服现有的半监督最大间隔聚类算法的不足,且其聚类精确度优于传统的半监督聚类算法。
In order to overcome the drawback of the existent semi-supervised maximum margin clustering algorithm, i.e., it is insensitive to the violation for the pairwise constraints when there are a few samples that are very similar but from two different ground-truth classes, this paper proposes a new semi-supervised maximum margin clustering method. Firstly, a set of robust loss functions for violating the pairwise constraints is put forward based on the maximum margin principle, which is still able to effectively detect and penalize the violation for the pairwise constraints in the aforementioned difficult case. Secondly, an iterative algorithm is derived based on the constrained concave-convex procedure (CCCP) to solve the resulting optimization problem. The Experimental results have demonstrated the effectiveness of the proposed method.
宋爱国、曾洪
计算技术、计算机技术
模式识别半监督聚类成对约束最大化间隔准则鲁棒的损失函数约束凹凸过程
Pattern recognitionSemi-supervised ClusteringPairwise constraintsthe Maximum Margin PrincipleRobust loss functionthe Constrained Concave-Convex Procedure
宋爱国,曾洪.基于最大化间隔准则和成对约束的鲁棒半监督聚类方法[EB/OL].(2012-03-01)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201203-7.点此复制
评论