|国家预印本平台
首页|基于选择性搜索的交通标志检测方法

基于选择性搜索的交通标志检测方法

raffic Sign Detection Based On Selective Search

中文摘要英文摘要

为解决现有交通标志检测算法对光照和形变敏感、分割阈值难以选择而导致检测准确率不高、鲁棒性较差,或难以满足实时的要求,充分利用基于分割和基于滑动窗口模式的两种检测方法的优势,提出了一种基于选择性搜索的交通标志检测方法。该方法采用改进的分层分组的算法获取交通标志目标假设区域集合,然后直接对该假设区域集合进行HOG 特征提取和训练,不再对图片进行穷举搜索。其中,在改进的分层分组算法中使用了权值组合的相似度策略对分割区域进行合并组合,以便得到更多更好的交通标志目标假设区域集合。实验结果表明,本文提出的交通标志检测方法具有鲁棒性强、检测准确率高、实时性更好等优点,有较大的现实应用潜力。

In order to solve problems that some current traffic sign detection algorithms are sensitive to light and deformation, difficult to set the threshold value, so they have low accuracy, less robustness or difficulty for meeting real-time requirements. A new traffic sign detection method is proposed based on selective searching, by full use of advantages of both segmentation-based method and the sliding window scheme detection method. It uses an improved hierarchical grouping algorithm to obtain object hypothesis regions of traffic signs, and then directly extracts HOG feature and trains these regions. It doesn't need exhaustive searching. The improved hierarchical grouping algorithm uses similarity strategy based on combined weights to merge the divided region for obtain more and better object hypothesis regions of traffic signs. Experimental results show that the proposed method achieves high accuracy ratio, robust to various adverse situations, and has a greater potential for real-time practical application.

李红波、欧阳文、张少波、吴渝

公路运输工程电子技术应用计算技术、计算机技术

模式识别交通标志检测图像分割选择性搜索HOG特征描述子

pattern recognitiontraffic sign detectionimage segmentationselective searchhistogram of oriented gradient

李红波,欧阳文,张少波,吴渝.基于选择性搜索的交通标志检测方法[EB/OL].(2016-04-12)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201604-134.点此复制

评论