基于二维线性判别分析的人脸识别算法研究
study on face recognition algorithm based on two-dimensional linear discriminant analysis
在现有成熟的人脸识别算法中,主成份分析法(PCA)侧重于压缩,不利于分类,线性判别分析(LDA)算法虽适合于分类,但存在小样本的问题。PCA+LDA算法是先利用PCA技术对原图像进行降维处理,使得类内离散度矩阵非奇异,之后再用LDA的方法进行特征提取,但在利用PCA降维的同时会丢失部分图像信息,影响后续的分类。为此,本文研究了双向二维线性判别分析2DLDA的方法,该方法是直接从人脸图像矩阵求得类内和类间离散度矩阵,并不需要将人脸图像矩阵转化为向量,不仅解决了小样本问题,也减少了计算量,实验结果也表明2DLDA算法相对于PCA、PCA+LDA算法具有一定的优势
In the existing mature face recognition algorithms, the principal component analysis (PCA) method focuses on compression, is not conducive to the classification. The linear discriminant analysis (LDA) algorithm, although suitable for classification, but there are problems of small samples. PCA + LDA algorithm use PCA to reduce the dimension of the original image firstly, and to make the class scatter matrix nonsingular, then use LDA method for feature extraction. However, this method will also lose some image information when using PCA to reduce dimension, and is not good for the subsequent classification. To solve this problem. This paper studied the two-dimensional linear discriminant analysis method(2DLDA).The method obtaineed the within and between-class scatter matrix from the face image matrices directly, and does not need to change face images into vector matrix, not only solved the small sample size problem, but also reduced the amount of computation. Experimental results show that 2DLDA algorithm has certain advantages compared to the PCA, PCA + LDA algorithm.
王丽莉、王宝珠、周亚同
计算技术、计算机技术
人脸识别主成分分析线性判别分析PCA+LDA二维线性判别分析
Face RecognitionPCALDAPCA+LDA2DLDA
王丽莉,王宝珠,周亚同.基于二维线性判别分析的人脸识别算法研究[EB/OL].(2013-12-02)[2025-08-30].http://www.paper.edu.cn/releasepaper/content/201312-12.点此复制
评论