布希涅斯克解答适用范围研究
Boussinesq's Applicable Scope Explore
本文研究土力学半空间体受法向集中力作用下的布希涅斯克解答中当所求应力点靠近作用荷载时竖向应力大小根据公式计算得到的竖向力趋于无穷大的问题。结合圣维南原理,解决了布希涅斯克奇异点问题。距离荷载较近区域内点荷载应看作分布荷载.随着研究弹性体质点深度的增加,分布荷载跨度应成反比例关系,假设质点深度 和荷载跨度a函数关系为当 ,k为待定系数,证明了在这种假设情况下荷载跨度的存在性可以消除奇异点, 。 刻画了a随 变化分界点。 .荷载跨度可以忽略不计。定量说明一般深度看作点荷载仍然成立的合理性.对其相对误差进行量化说明.看作集中力和分布力在不同深度的相对误差,定量确定误差较小弹性体深度范围,是本文研究的重点。引进相对深度系数 ,只要满足 ,荷载跨度引起的误差可以忽略不计,仍可使用布希涅斯克公式。从而在工程计算中更加合理,科学的运用弹性力学公式.
his paper studies the the vertical force of boussinesq formulas near vertical stress when the load size calculated according to the formula of tends to infinity problem. Combined with Saint-Venant principle, to solve the problem of singularities boussinesq. From within the region closer to the load point load more scientific as distributed loads, distributed loads can be mathematically eliminated from the singular point.With the physical point of elasticity depth increases, distributed load span should be inversely proportional relationship Along with the increase of depth of the particle research elastomer, distribution load span inverse relation, Assuming particle depth and load span as a function of when ,k coefficients to be determined to prove this hypothesis in the case of the existence of the load span singularity can be eliminated. depicts cut-off point with change, load span canbe negligible. And as concentration and distributing force at different depths relative error is how much, the quantitative determination of small errors, is the depth of elastomer scope of the key.If meet , Load span the error caused by negligible, Boussinesq can still use cloth within scottie formula .Thus in the engineering calculation is more rational, using elastic mechanics formula of science.
沈寿亮、宋锦焘、梁睿斌、冯龙龙、赵二峰、刘天祥
工程基础科学
弹性力学布辛内斯克奇异点圣维南定理荷载跨度
ElasticityBoussinesqsingularitySaint-Venant`s theoremLoad span
沈寿亮,宋锦焘,梁睿斌,冯龙龙,赵二峰,刘天祥.布希涅斯克解答适用范围研究[EB/OL].(2013-08-16)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201308-168.点此复制
评论