|国家预印本平台
首页|Riemann假设一个等价命题的证明

Riemann假设一个等价命题的证明

Proof of an Equivalent Proposition of Riemann Hypothesis

中文摘要英文摘要

运用Chebyshev函数与素数定理等证明:存在正常数A,对所有自然数n≥A,那么有 exp(Hn)log(Hn)—σ(n)﹥eγnloglogn—σ(n)﹥0. 这里σ(n)是自然数n的所有因子和,Hn是1到n的所有自然数的倒数之和。由Robin定理,Riemann假设被证明成立。

Using Chebyshev function and prime number theorem, this paper proves that, there exists a positive constant A, such that for all natural numbers n≥A, exp(Hn)log(Hn)-σ(n)﹥eγnloglogn-σ(n)﹥0. According to Robin theorem, the Riemann Hypothesis is proved. Where Hn is the reciprocal sum of all natural numbers from 1 to n.

朱玉扬

数学

Riemann 假设非平凡零点调和数不等式素数

Riemann hypothesisnon-trivial zerosharmonic numberinequalityprime number

朱玉扬.Riemann假设一个等价命题的证明[EB/OL].(2016-12-19)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201612-375.点此复制

评论