基于 Kalman 滤波和直方图匹配的双目视觉跟踪
Binocular Visual Tracking Based on Kalman Filter and Histogram Matching
视觉跟踪是计算机视觉领域一个十分重要的问题,目前大部分的研究关注于单目摄像机目标跟踪。而基于单目摄像机的目标跟踪会丢失深度信息,使得当目标出现遮挡、阴影等问题时跟踪难度进一步加大。因此本文提出了一种基于 Kalman 滤波和直方图匹配的双目视觉跟踪方法。该方法首先利用 Kalman 滤波预测出目标所在位置,其次利用直方图匹配在局部区域搜索到目标,最后利用极线约束来对匹配结果进行确认,实现完整的预测-匹配-确认的跟踪过程。实验表明,对比 Mean Shift 算法,该算法能有效减少跟偏或者跟丢的情况,取得了良好的跟踪效果。
Visual tracking is a very important problem in the computer vision. Most of the studies focus on the monocular camera target tracking. the object tracking methods based on monocular camera would lose the depth information, which will cause much more difficult to track the object when faced with occlusion, shadow and so on. This paper proposes an algorithm of binocular vision tracking based on Kalman filter and histogram matching. This algorithm firstly uses Kalman filter to predict the position of the target. Then histogram matching is used to search the object in the local region. At last epipolar constraint will be adapted to verify the tracking result at last, which realizes a complete prediction-matching-verification tracking process. The experiments show the algorithm could effectively reduce tracking failure and get better tracking performance compared with the Mean Shift algorithm.
蔡开元、付强、全权、王江
计算技术、计算机技术电子技术应用自动化技术、自动化技术设备
Kalman 滤波直方图匹配双目视觉跟踪极线约束
Kalman FilterHistogram MatchingBinocular Vision trackingEpipolar Constraint
蔡开元,付强,全权,王江.基于 Kalman 滤波和直方图匹配的双目视觉跟踪[EB/OL].(2013-01-25)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/201301-1041.点此复制
评论