一种基于图卷积网络与 Inception 结构的半监督学习模型
semi-supervised learning model based on GCN and Inception structure
在许多现实场景下,其中的数据具有图(Graph)的结构,比如文献集构成的引文网络或是知识库等。对于这种具有图结构的数据,往往有着图上节点分类的问题,如文献集上是每个文献的分类或知识库上就是每个命名实体的分类。对于这些问题中呈图状的结构的数据,图卷积网络是近年来较为热门的神经网络方法。图卷积为卷积神经网络在图结构数据上的推广,有类似于卷积神经网络的层次化的特点。为解决图上节点分类的问题,本文利用卷积神经网络中的思想,对图卷积网络的网络结构优化进行了研究,并提出了一种基于图卷积网络与 Inception 结构的半监督学习模型,Inception-GCN(Inception Graph Convolution Network)模型。Inception -GCN 模型以 Kipf 等提出的 GCN 模型为基础,使用卷积神经网络中的 inception 网络结构的思想,对图卷积网络进行改进,在半监督分类任务中取得了较好的结果,在原 GCN 提出时所进行验证的 NELL 数据集上,准确率相比于原模型提高了 0.7%。
In many real-world scenarios such as a citation network or a knowledge base formed by a collection of documents, the data has a graph structure. For such data with graph structure, there is often a problem of node classification on the graph, such as the classification of each document in the document set or the classification of each named entity in the knowledge base. For data with a graph-like structure in these problems, graph convolutional network is a popular neural network method in recent years. Graph convolution network is a generalization of convolutional neural networks on graph structured data and has hierarchical characteristic similar to graph convolution network. This paper uses the ideas in convolutional neural networks to study the network structure optimization of graph convolutional networks, and proposes a semi-supervised learning model based on graph convolutional networks and Inception structures. Inception-GCN (Inception Graph Convolution Network) model. The Inception-GCN model based on the GCN model proposed by Kipf et al and uses the idea of the Inception network structure from CNN to improve the GCN. It has achieved good results in the semi-supervised classification task. It improves accuracy rate by 0.7% compared with the original model On the NELL data set which is used at the proposal of the original graph convolution network model.
范春晓、刘峻辰、吴岳辛
计算技术、计算机技术
实体分类图卷积网络Inception结构
entity classificationGraph Convolutional Network (GCN)Inception structure
范春晓,刘峻辰,吴岳辛.一种基于图卷积网络与 Inception 结构的半监督学习模型[EB/OL].(2020-04-07)[2025-06-19].http://www.paper.edu.cn/releasepaper/content/202004-52.点此复制
评论