基于DDQN的多智能体冲突消解方法
针对智能体在局部观测下无法有效决策的问题,提出了一种结合深度强化学习的冲突消解方法。该方法基于DDQN算法,利用强化学习的学习模式的特性,计算智能体的累计回报,通过回报值的大小确定智能体的优先级,从而达到冲突消解的目的。通过模拟现实生活中的堵车场景对该方法进行评估,实验结果表明,该方法能有效解决智能体的冲突。
o solve the problem that agents cannot make effective decisions under local observation, a conflict resolutionmethod combined with deep reinforcement learning is proposed. Based on DDQN algorithm, this method uses the characteristicsof reinforcement learning mode to calculate the cumulative return of agent and determine the priority of agent throughthe return value, so as to achieve the purpose of conflict resolution. The method is evaluated by simulating the traffic jam inreal life, and the experimental results show that the method can effectively solve the agent conflict.
翟仲毅、赵岭忠、张 翼
自动化技术、自动化技术设备计算技术、计算机技术
多智能体系统冲突消解深度神经网络深度学习强化学习
翟仲毅,赵岭忠,张 翼.基于DDQN的多智能体冲突消解方法[EB/OL].(2022-10-26)[2025-08-16].https://chinaxiv.org/abs/202210.00199.点此复制
评论