基于HITS算法的安卓应用程序分类技术研究
utomatic Android Application Classification based on HITS Algorithm
安卓操作系统的迅速发展以及安卓应用数量的大幅增加为应用市场带来了自动化分类的难题。现有的安卓应用自动化分类方法主要关注如何拓展特征的提取范围,忽视了特征之间的关联关系,由此降低了分类准确率。本文提出一种解决方案,通过分析API的调用关系,为API特征设置不同的权重。本文设计了一种应用于API特征的新型筛选方法,充分利用API相关特征以及其他静态特征信息,将它们结合起来构建安卓应用自动化分类的机器学习模型。为了从每个类别中挑选出关键的API特征,本文提出使用Hyperlink-Induced Topic Search(HITS)算法来对API和应用功能的相关性进行排名。通过提出的应用分类解决方案,本文分析了来自谷歌应用市场的12791个应用,最终实现了86.6%的分类准确率,比现有研究提高了大约7%。
he rapid development of Android operating system and the large increase of Android applications have brought the problem of automatic classification to application markets. The existing automatic classification methods of android applications focus mainly on expanding the scope of features, which ignores the internal relationship between them and limits the improvement of accuracy. This paper proposes a solution to this problem, and analyze the call relationships to set different weights for APIs. This paper designs a new screening method for API features and make the most of the static feature information to build a machine learning model of application classification. In order to select the key APIs in each category, this paper proposes to rank the correlation between API and application\'s functionality by hyperlink induced topic search (HITS) algorithm. Through this application classification solution, this paper analyzed 12791 applications from Google Play Store, and finally achieved an 86.6% classification accuracy, which is about 7% higher than the performance of existing methods.
刘元安、刘栋、范文浩
计算技术、计算机技术
数据安全与计算机安全应用分类机器学习HITS算法静态代码分析
ata security and computer securityapplication classificationmachine learningHITS algorithmstatic analysis
刘元安,刘栋,范文浩.基于HITS算法的安卓应用程序分类技术研究[EB/OL].(2021-02-26)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/202102-95.点此复制
评论