|国家预印本平台
首页|On the Wedderburn decomposition of the total ring of quotients of certain Iwasawa algebras

On the Wedderburn decomposition of the total ring of quotients of certain Iwasawa algebras

On the Wedderburn decomposition of the total ring of quotients of certain Iwasawa algebras

来源:Arxiv_logoArxiv
英文摘要

Let $\mathcal G\simeq H\rtimesΓ$ be the semidirect product of a finite group $H$ and $Γ\simeq\mathbb Z_p$. Let $F/\mathbb Q_p$ be a finite extension with ring of integers $\mathcal O_F$. Then the total ring of quotients $\mathcal Q^F(\mathcal G)$ of the completed group ring $\mathcal O_{F}[[\mathcal G]]$ is a semisimple ring. We determine its Wedderburn decomposition by relating it to the Wedderburn decomposition of the group ring $F[H]$.

Ben Forr??s

数学

Ben Forr??s.On the Wedderburn decomposition of the total ring of quotients of certain Iwasawa algebras[EB/OL].(2025-06-18)[2025-07-16].https://arxiv.org/abs/2403.04663.点此复制

评论