On the Wedderburn decomposition of the total ring of quotients of certain Iwasawa algebras
On the Wedderburn decomposition of the total ring of quotients of certain Iwasawa algebras
Let $\mathcal G\simeq H\rtimesÎ$ be the semidirect product of a finite group $H$ and $Î\simeq\mathbb Z_p$. Let $F/\mathbb Q_p$ be a finite extension with ring of integers $\mathcal O_F$. Then the total ring of quotients $\mathcal Q^F(\mathcal G)$ of the completed group ring $\mathcal O_{F}[[\mathcal G]]$ is a semisimple ring. We determine its Wedderburn decomposition by relating it to the Wedderburn decomposition of the group ring $F[H]$.
Ben Forr??s
数学
Ben Forr??s.On the Wedderburn decomposition of the total ring of quotients of certain Iwasawa algebras[EB/OL].(2025-06-18)[2025-07-16].https://arxiv.org/abs/2403.04663.点此复制
评论