|国家预印本平台
首页|On the Assouad spectrum of Hölder and Sobolev graphs

On the Assouad spectrum of Hölder and Sobolev graphs

On the Assouad spectrum of Hölder and Sobolev graphs

来源:Arxiv_logoArxiv
英文摘要

We provide upper bounds for the Assouad spectrum $\dim_A^θ(\text{Gr}(f))$ of the graph of a real-valued Hölder or Sobolev function $f$ defined on an interval $I \subset \mathbb{R}$. We demonstrate via examples that all of our bounds are sharp. In the setting of Hölder graphs, we further provide a geometric algorithm which takes as input the graph of an $α$-Hölder continuous function satisfying a matching lower oscillation condition with exponent $α$ and returns the graph of a new $α$-Hölder continuous function for which the Assouad $θ$-spectrum realizes the stated upper bound for all $θ\in (0,1)$. Examples of functions to which this algorithm applies include the continuous nowhere differentiable functions of Weierstrass and Takagi.

Efstathios Konstantinos Chrontsios Garitsis、Jeremy T. Tyson

数学

Efstathios Konstantinos Chrontsios Garitsis,Jeremy T. Tyson.On the Assouad spectrum of Hölder and Sobolev graphs[EB/OL].(2025-07-05)[2025-07-16].https://arxiv.org/abs/2309.07783.点此复制

评论