|国家预印本平台
首页|基于多目标蚁群改进算法的虚拟机放置策略

基于多目标蚁群改进算法的虚拟机放置策略

Virtual Machine Placement Strategy Based on Multi-Objective Ant Colony Improved Algorithm

中文摘要英文摘要

虚拟机的放置问题是云计算基础设施及服务(IaaS)中的关键需求之一,物理机和虚拟机之间的映射的好坏对云计算系统的QoS、资源损耗、电源消耗产生了巨大的影响。早期的研究点主要在维持应用性能的同时,如何提高系统资源的利用率。最近,节能省电成为云平台关注的热点问题。为了减少电源消耗,利用虚拟机迁移技术将虚拟机整合到较少的物理节点上来达到省电的目的,但是虚拟机过于集中会导致应用性能下降。所以,这些目标的优化是相互冲突的。现在很少有研究能同时将应用性能、资源浪费和电源消耗综合进行考虑来实现虚拟机放置问题的优化,大多数时候只能获得局部而不是全局最优解。因此,提出一种基于多目标蚁群改进算法的虚拟机放置策略来考虑所有这些目标并进行权衡和折衷。实验结果表明,该方法能够很好的均衡不同目标之间的冲突,从而使系统产生较小的资源负载和较少的电源消耗又能保证较好的应用性能。

Virtual machine(VM)placement is a key problem of cloud computing. Currently, many research focus on the management of data center. A lot of studies are targeted maintaining the performance properties ,as well as enhancing the utilization rate of system resource in early stage. In order to reduce power consumption, virtual machines can be moved to fewer physical nodes to achieve the purpose of saving power with the technology of migration. However, the optimization of these objectives are conflicting. Now there is little research take a comprehensive consideration about SLA , waste of resources and power consumption to optimize virtual machine placement problem, Most of the time only get a partial rather than a global optimal solution.In order to solve this problem ,this paper proposes a new virtual machine placement strategy based on Multi-Objective Ant Colony Improved(MACI) .Experimental results show that our algorithm can achieve the optimal balance in multiple conflict objectives,which effectively reduces the resource load and power consumption.

秦素娟、张莉莉

计算技术、计算机技术

云计算虚拟机放置蚁群改进算法节能动态管理

loud computingVirtual Machine PlacementAnt Colony Improved AlgorithmSave EnergyDynamic management?

秦素娟,张莉莉.基于多目标蚁群改进算法的虚拟机放置策略[EB/OL].(2014-12-04)[2025-07-25].http://www.paper.edu.cn/releasepaper/content/201412-131.点此复制

评论