|国家预印本平台
首页|内容感知的环境光采样算法

内容感知的环境光采样算法

ontent-Aware Environment Map Sampling

中文摘要英文摘要

本文提出一种新的环境光采样方法,可有效地减少真实感渲染的计算成本。本文方法充分利用自适应均值漂移(Mean-Shift)算法的优点,产生内容感知的区域集合。然而,所产生的区域在渲染重要性上并不均衡,而且区域数目是用户不可控的。针对以上问题,本文提出一个自适应分离和合并机制,以调整区域分布得到重要性更均衡的区域集合。同现有常用方法相比,本文方法可获得更好的渲染质量。实验结果也表明本文方法对于选用不同采样点数目更为稳定性。

In this paper, we present a novel approach for environment map sampling, which is an effective and pragmatictechnique to reduce the computational cost of realistic rendering. The proposed approach exploits the advantage of adaptivemean-shift image clustering, yielding content-aware strata. The resulting strata, however, have unbalanced importances for therendering, and the strata number is not user-controlled. To handle these issues, we further develop an adaptive split-and-mergescheme that refines the strata and obtains a more balanced strata distribution. Compared with the state-of-the-art methods, ourapproach achieves comparable and even better rendering accuracy. What’s more, experimental results show that our approachis more robust to the variation of the sample number.

万亮、冯伟、杨英

计算技术、计算机技术

环境光采样自适应Mean-Shift聚类自适应分离和合并机制

Environment map sampling adaptive mean-shift clustering adaptive split-and-merge

万亮,冯伟,杨英.内容感知的环境光采样算法[EB/OL].(2014-08-12)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201408-106.点此复制

评论