|国家预印本平台
首页|基于Q学习的协同多路径规划研究

基于Q学习的协同多路径规划研究

Q-Learning Based Cooperative Multiple Paths Planning

中文摘要英文摘要

车辆路径规划技术是解决城市交通拥堵的有效手段之一。传统的路径规划算法通常只给出最优路径,难以避免车辆所经过路段偶然瘫痪导致没有可选路径的问题。引入多路径规划技术,可保证车辆在任何情况下都有可选路径,提高路径规划稳定性。本文提出基于Q学习的协同算法,为不同的OD对找寻最优的多路径规划。首先,利用Q学习思想对路网建模。其次,巧妙地利用Q学习的回报值推算多候选路径。接着,引入多路径集的稳定性约束,确保在任何情况至少存在一条可用路径。引入协同机制协调多代理间路径规划的相互影响,保证规划后的负载均衡。仿真结果与分析验证了本文算法的高效和稳定性。

Path planning for vehicles is an effective means to solve urban traffic congestion.The traditional path planning algorithms usually give only the optimal path. Once the optimal path is invalid, no alternative paths exist for vehicles. In order to improve the stability of path planning, multiple paths planning technology is introduced to ensure that at least one optional path exists for vehicles in any case.This paper proposes a Q-learning based cooperative algorithm with FNN to obtain optimal multiple paths set for Origin-Destination (OD) pairs. First, a Q-learning algorithm is applied to represent the road model. Second, the return value of Q-learning is skillfully used to find multiple paths. Reliable constraints of multiple paths set are introduced to ensure at least one available path exists in any case. Furthermore, the cooperative mechanism is introduced to coordinate path planning among agents to balance the future traffic load. Simulation results validate its efficiency and reliability.

马东、黄志武、李冲

公路运输工程自动化技术、自动化技术设备计算技术、计算机技术

多路径规划Q学习协同机制稳定性约束

multiple paths planningQ-learningcooperative mechanismreliable constraints

马东,黄志武,李冲.基于Q学习的协同多路径规划研究[EB/OL].(2015-11-30)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/201511-822.点此复制

评论