The Kelmans-Seymour conjecture II: 2-vertices in $K_4^-$
The Kelmans-Seymour conjecture II: 2-vertices in $K_4^-$
We use $K_4^-$ to denote the graph obtained from $K_4$ by removing an edge, and use $TK_5$ to denote a subdivision of $K_5$. Let $G$ be a 5-connected nonplanar graph and $\{x_1,x_2,y_1,y_2\}\subseteq V(G)$ such that $G[\{x_1,x_2,$ $y_1,y_2\}]\cong K_4^-$ with $y_1y_2\notin E(G)$. Let $w_1,w_2,w_3\in N(y_2)-\{x_1,x_2\}$ be distinct. We show that $G$ contains a $TK_5$ in which $y_2$ is not a branch vertex, or $G-y_2$ contains $K_4^-$, or $G$ has a special 5-separation, or $G-\{y_2v:v\notin \{w_1,w_2,w_3,x_1,x_2\}\}$ contains $TK_5$.
Xingxing Yu、Yan Wang、Dawei He
数学
Xingxing Yu,Yan Wang,Dawei He.The Kelmans-Seymour conjecture II: 2-vertices in $K_4^-$[EB/OL].(2016-02-24)[2025-08-05].https://arxiv.org/abs/1602.07557.点此复制
评论