RN上分数阶Schrodinger方程的基态解
Ground State of Fractional Schrodinger Equations on RN
本文研究$mathbb{R}^N$上一类稳态分数阶Schr"odinger方程. 利用变分法, 我们在势函数是无界的而非线性项只满足次临界增长和下面几何型条件下 egin{eqnarray*}limsuplimits_{t ightarrow0^+} rac{2int_0^{t}g( au)d au}{t^2}<infsigma((-Delta)^{s}+V(x))<liminflimits_{t ightarrow+infty} rac{2int_0^{t}g( au)d au}{t^2}, end{eqnarray*} 得到基态解的存在性.
In this paper, we study a kind of time-independent fractionalSchr"odinger equation. By variational method, we prove the existence of ground state solutions when the potential $V(x)$ is unbounded and the nonlinearity $g(x)$ is subcritical and satisfies only the following geometry condition egin{eqnarray*}limsuplimits_{t ightarrow0^+} rac{2int_0^{t}g( au)d au}{t^2}<infsigma((-Delta)^{s}+V(x))<liminflimits_{t ightarrow+infty} rac{2int_0^{t}g( au)d au}{t^2}. end{eqnarray*}
常小军
物理学数学
分数阶Schrodinger方程基态解变分法
Fractional Schrodinger equationsGround stateVariational method
常小军.RN上分数阶Schrodinger方程的基态解[EB/OL].(2013-01-10)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201301-511.点此复制
评论