Riemann-Liouville抽象分数阶松弛方程
On Riemann-Liouville Abstract Fractional Relaxation Equations
本文研究抽象分数阶松弛方程。提出了Riemann-Liouville分数阶$(lpha,eta)$预解式的概念并得到了一些相关性质。结合这些性质和一般的Mittag-Leffler的性质,我们得到了齐次和非齐次抽象分数阶松弛方程的解的存在性和唯一性。
his paper is concerned with abstractfractional relaxation equations. The notion of Riemann-Liouville fractional $(lpha,eta)$ resolvent and some of its propertiesare studied. Moreover, by means of such properties and the properties of general Mittag-Leffler functions, the existence and uniqueness of the strong solution of the homogeneous and inhomogeneous abstract fractional relaxation equations are derived.
梅占东、金瑞
数学
分数阶松弛方程Riemann-Liouville分数阶 (αβ)预解式强解
Fractional Relaxation EquationRiemann-Liouville fractional (αβ) resolventstrong solution
梅占东,金瑞.Riemann-Liouville抽象分数阶松弛方程[EB/OL].(2017-05-02)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201705-40.点此复制
评论