|国家预印本平台
首页|改进的k均值算法在高校绩效工资分类管理中的应用研究

改进的k均值算法在高校绩效工资分类管理中的应用研究

pplication of Improved K-means Clustering in High School Performance Pay Grade

中文摘要英文摘要

研究了改进的k均值算法,提出寻找初始聚类中心的新方法,基于距离与密度确定初始聚类中心,避免重复计算并提高聚类准确率。建立高校绩效工资分级决策支持系统,按照数据挖掘的步骤,建立各种数据表并生成聚类数据集,应用改进的算法获得绩效工资分级标准的结果,实现绩效工资分级,并给出详细的结果与分析,为绩效管理提供科学依据。

Studies the improved k-means clustering algorithm and proposes a new method to find the initial clustering centers. Searching initial clustering centers based on distance and density avoids calculating distance values between objects repeatedly and increases accuracy rate of clustering. Then develops an high school performance grade decision support system. The decision support system uses the improved k-means clustering algorithm to get performance pay grade standards. Finally, the result and analysis are given at the last of the paper.

郑丹

教育计算技术、计算机技术

数据挖掘k均值绩效Sk-means聚类中心

data miningk-meansperformanceDSk-meansclustering ceneters

郑丹.改进的k均值算法在高校绩效工资分类管理中的应用研究[EB/OL].(2011-05-11)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201105-266.点此复制

评论