|国家预印本平台
首页|统计机器翻译中非线性参数学习的研究

统计机器翻译中非线性参数学习的研究

Research on Parameter Learning of Non-linear Model in Statistic Machine Translation

中文摘要英文摘要

尽管对数线性模型在统计机器翻译系统中取得了显著的效果,但是该模型仍然存在着一些缺陷。首先,对数线性模型限制了其使用的特征与最终模型得分之间必须成线性关系,这一限制使得模型的计算较为高效,但难以有效地保证该限制符合各种特征的实际情况。其次,对数线性模型限制了特征之间必须成线性关系,无法描述特征之间可能的复杂组合关系,因而无法深度地刻画和表达特征中蕴含的信息,这使得特征的设计需要大量的人为知识和经验的干预。非线性模型的引入有望放松特征与模型得分以及特征与特征之间的线性限制,从而提高模型的表达能力。本文通过分析和实验探讨了非线性模型应用在统计机器翻译中时需要解决的学习框架、目标函数和采样方法等问题,并在此基础上研究了非线性模型对统计机器翻译系统的影响。

lthough the log-linear model achieves great success in SMT, it still suffers from some drawbacks: first, the features which are used in the model must be linear with respect to the model itself; then, the model restricts its features must be linear with each other. This constraint makes the model unable to describe the complex combination between features so that it cannot further interpret the features to reach their potential information, which makes feature designation hard and often needs human knowledge and understanding to help. A non-linear model is a reasonable method to relax these linear constraints. This paper focuses on the effects of using non-linear model in SMT and conducts experiments to verify which learning framework, object function and sample method are suitable for this kind of situation.

陈家骏、赵迎功、戴新宇、黄书剑、陈华栋

计算技术、计算机技术

对数线性模型统计机器翻译非线性模型

log-linear model SMT non-linear model

陈家骏,赵迎功,戴新宇,黄书剑,陈华栋.统计机器翻译中非线性参数学习的研究[EB/OL].(2015-12-17)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201512-907.点此复制

评论