关于分类器集成方法的研究及在文本分类中的应用
he research of classifier integration and the application in text classification
基于机器学习进行分类的方法可谓是层出不穷,目前主要的研究内容大致分为这样几个层面,一是特征提取层面;二是特征选择层面;三是分类器的层面。而集成学习将各种不同的分类方法结合起来,进行综合决策。本文提出一种方法,通过统计噪声样本的特征让问题变得更有针对性,从而能够选择更好的集成方案,为进一步优化结果提供了可能。本文选择了文本分类进行实验,实验结果证明了该方法的有效性。
With more and more methods of classifying based on machine learning,the main research contents is divided into three layers,the first layer is feature extraction ,the second layer is feature selection, the third layer is using the classifier.In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms.To solve the problem of selecting the optimal ensemble method , a method of counting the features of noise samples to optimize the problem is proposed.The experiment is on the text classification, The results show the validity of this method.
杜江、张轶词
计算技术、计算机技术
机器学习集成学习噪声样本
mechine learningensemble methodnoise samples
杜江,张轶词.关于分类器集成方法的研究及在文本分类中的应用[EB/OL].(2015-04-10)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201504-186.点此复制
评论