薛定谔泊松系统的无穷多高能量解
Infinitely many high energy solutions for Schr\"{o}dinger-Poisson system
本文研究了如下薛定谔泊松系统\begin{equation*} \begin{cases} -\Delta u+V(x)u+\phi u=f(u), & \text{ in }\R,\\ -\Delta \phi= u^2, & \text{ in }\R, \end{cases}\end{equation*}其中我们假设$V(x)$是强制的,并且对于任意的$t\in\RRR\setminus\{0\}$,$f$满足$\frac{1}{3}f(t)t\geq F(t)>0$。在其他确定的假设条件下,通过对称山路定理,我们得到了薛定谔泊松系统的无穷多解。
In this arcitle, we investigate the following Schr\"{o}dinger-Poisson system\begin{equation*} \begin{cases} -\Delta u+V(x)u+\phi u=f(u), & \text{ in }\R,\\ -\Delta \phi= u^2, & \text{ in }\R, \end{cases}\end{equation*}where $V(x)$ is coercive, $f$ satisfies that $\frac{1}{3}f(t)t\geq F(t)>0$ for every $t\in\RRR\setminus\{0\}$. Under certain assumptions about the above terms, we obtain infinitely many high energy solutions for the system by Symmetric mountain pass theorem.
唐春雷、熊彪
数学物理学
薛定谔泊松系统对称山路定理波霍扎耶夫恒等式
Schr\"{o}dinger-Poisson system Symmetric mountain pass theorem Poho\v{z}aev identity
唐春雷,熊彪.薛定谔泊松系统的无穷多高能量解[EB/OL].(2023-02-21)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/202302-128.点此复制
评论