|国家预印本平台
首页|一种改进的社区发现最大流算法

一种改进的社区发现最大流算法

n Improved Maximum Flow Algorithm for Web Communities Identification

中文摘要英文摘要

王络社区是部分网页的集合,这些网页在社区内的链接多于它们到社区外的链接,并且使用最大流算法可以提取出网络中的一个稠密子图作为一个网络社区。由于给边容量赋了常值,原始的最大流算法常常把包含噪音页面的图结构提取出来。使用最大流算法求解社区发现问题时,边容量如何分配决定了所发现社区的质量。本文根据概率分布的特点,利用网页的入度和出度的概率分布,给出了边容量的分配基于概率分布的最大流算法MBP(Maxflow-Based-Powerlow Algorithm),该算法既考虑了从一个结点链出或链入到该结点的边的重要性差异,又考虑了从不同结点链出或链入到不同结点的边的重要性差异。实验表明,本文给出的边容量基于概率分布的方法改进了传统的最大流算法,提高了网络社区的质量。

web community is a set of web pages having more links in the communities than the outside, using the maximum flow algorithm,we will extract a sense subgraph which can be recognized as a web community[1]. The previously proposed approach has a problem that a certain graph structure containing noises is always extracted, this problem is mainly caused by edge capacities assigned a constant value. When applying maxflow algorithm to web community identification, how to assign the edge capacity will decide the quality of the community. Basing on the characteristics of probability distribution, and utilizing powerlaw distribution of web page’s in-degree and outdegree, this paper proposes a maximum flow algorithm MBP(Maxflow-Based-Powerlow Algorithm)which assign edge capacities variably based on powerlaw distribution, this method not only considers the differences of edges’ importance which link from the same node , but also considers that from different nodes, so that it mends traditional maximum flow algorithm ,and improves the quality of web communities.

姚红艳

计算技术、计算机技术

网络社区网络图最大流算法

web communityweb graphmaximum flow algorithm

姚红艳.一种改进的社区发现最大流算法[EB/OL].(2006-11-13)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/200611-301.点此复制

评论