鲁棒优化设计的交叉熵算法
Robust Optimization using Cross Entropy Methods
当系统中存在不确定因素时,传统优化理论和技术得到的优化设计方案的技术、经济指标可能发生明显的退化。为解决这一问题,本文提出了一种鲁棒交叉熵算法。为提高鲁棒性能指标的计算效率,本文算法取正态分布函数为概率密度函数,以及提出仅计算优良个体的鲁棒性能指标的新策略。同时,本文采用机会规划法保证不确定条件下约束函数的鲁棒性。此外,为使算法同时具有鲁棒和全局寻优能力,本文提出优化过程中根据目标函数确定个体适值的新思想。为验证本文算法的可行性,最后给出了两个电磁场逆问题鲁棒优化设计的应用实例。
o address the performance degradations of optimal designs arising from uncertainties using traditional concepts and methodologies, a robust oriented cross entropy method is proposed. To efficiently compute the robust performances, the normal distribution function is used as the probability density function, and a methodology for evaluating and assigning robust performance to promising solutions is proposed. A statistical model is introduced for the constraint functions to enhance the quality of the final design. To find the global and robust optimal solutions simultaneously in a single run, the original objective rather than the robust performance parameters is used for selecting the elite solutions. Two examples are reported to validate the proposed algorithm.
杨仕友、白亚男
计算技术、计算机技术工程基础科学自动化基础理论
电工理论与新技术交叉熵算法电磁场逆问鲁棒优化
ross entropy methoddesign optimizationinverse problemrobust solution
杨仕友,白亚男.鲁棒优化设计的交叉熵算法[EB/OL].(2011-02-23)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201102-628.点此复制
评论