|国家预印本平台
首页|稀疏条件下的重叠子空间聚类算法

稀疏条件下的重叠子空间聚类算法

中文摘要英文摘要

现有子空间聚类算法不能很好地平衡子空间数据的稠密性和不同子空间数据稀疏性的关系,且无法处理数据的重叠问题。针对上述问题,提出一种稀疏条件下的重叠子空间聚类(OSCSC)算法。算法利用L1范数和Frobenius范数的混合范数表示方法建立子空间表示模型,并对L1范数正则项进行加权处理,提高不同子空间的稀疏性和同一子空间的稠密性;然后对划分好的子空间使用一种服从指数族分布的重叠概率模型进行二次校验,判断不同子空间数据的重叠情况,进一步提高聚类的准确率。在人造数据集和真实数据集上分别进行测试,实验结果表明,OSCSC算法能够获得良好的聚类结果。

he existing subspace clustering algorithms cannot balance the density of the data in the same subspace and the sparsity of the data between different subspaces and most algorithms cannot solve the overlap of data. To solve the above problems, this paper proposed a novel algorithm of overlapping subspace clustering algorithm under sparse condition (OSCSC) . The algorithm used the mixed norm representation method of L1 norm and Frobenius norm to establish the subspace representation model, and the weighted L1 norm regular term could improve the sparsity of different subspaces and the density of the same subspace. Then, the algorithm performed rechecks on the partitioned subspaces by using an overlapping probability model subject to exponential family distribution to determine whether exist overlapping in different subspaces, which could further improve the accuracy of clustering. The results of the experiment on both artificial datasets and real-world datasets show that the algorithm has better clustering performance by being compared to other contrast algorithms.

刘兴、刘大千、费博雯、邱云飞

10.12074/201805.00404V1

计算技术、计算机技术

重叠子空间聚类混合范数重叠概率模型指数族分布

刘兴,刘大千,费博雯,邱云飞.稀疏条件下的重叠子空间聚类算法[EB/OL].(2018-05-18)[2025-08-02].https://chinaxiv.org/abs/201805.00404.点此复制

评论