基于康托尔集合对函数对称性分析方法的探索
he researching which based on Cantor’s set in analysis of the functional symmetry
康托尔分析单峰信号的思想源于化学上用色谱仪测量的数据都是单峰的不对称信号,因此我做了能否可以用康托尔函数来分析信号的对称性的尝试。康托尔函数源于分形思想,但康托尔集合却是一个完备的不可数的自对称的集合,由此可以利用康托尔函数来研究对称性的问题,本文是利用康托尔函数在一定范围内取有限个离散的点来计算其偏态系数,与用三阶累量方法的偏态系数相比较,结果发现利用等间隔康托尔抽样和离散康托尔函数都可以大致保持原函数的对称程度不变,并且还得到了对于单波峰的函数来说当研究区间适当增大时,利用康托尔函数描述对称性的分辨率要比三阶累量的方法要好的结论.
he original concept of Cantor sets to analysis unimodal signal stem from the chemistry ,the data which use the instrument of chromatogram to measure are always unimodal and asymmetry. Whether can use Cantor sets to analysis signal so that I make try. Cantor functions stems from the convince of separate form ,but Cantor sets is a perfect uncounted and self-symmetric set , so that we can use Cantor sets to research problems such as the symmetry of signal. In the certain range, comparing the result of Cantor’s function using limited dot to compute biased coefficient with using the method of third order accumulation to compute the signal’s biased coefficient ,we find that both the equispaced Cantor sampling functions and discrete Cantor sampling functions can describe the symmetry sketch. Furthermore , when we choose some unimodal signals for example , the conclusion is that when period come bigger, using Cantor functions to describe symmetric resolution are better than the method of third order accumulation.
王双维、程欣
数学化学
康托尔 对称性 偏态
antor’s set symmetry biased coefficient
王双维,程欣.基于康托尔集合对函数对称性分析方法的探索[EB/OL].(2005-11-18)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200511-266.点此复制
评论