|国家预印本平台
首页|基于独立分量分析的数字图像盲复原方法研究

基于独立分量分析的数字图像盲复原方法研究

he Study of Blind Image Restoration Based on Independent Component Analysis

中文摘要英文摘要

独立分量分析是基于信号高阶统计量的盲源分离方法,在一般的独立分量分析方法中,没有限制源信号的正负,并且各源信号一定是在相互独立的情况才能够得到很好的分离效果,从而导致其应用范围受到限制。本文将独立分量分析应用于图像盲复原,通过增加了对源信号非负的限制,并且引入去相关矩阵,消除了源信号之间的相关性对独立分量分析方法的影响。实验结果证明,本文提出的方法能够较好地实现对模糊图像的盲复原。

Independent Component Analysis is a novel method for blind source separation based on high statistics,in general methods of ICA, its application scope is limited, because it doesn’t have a constraint of non-negativity of the source random victors and only if the source vectors are independent of each other, ICA can achieve good results. In this paper, the method of ICA is application to blind image restoration with the constraint of non-negativity. Besides this, by a matrix of decor relation, it eliminates the bad effect of the source signal’s correlation to the algorithm. The experiment results demonstrate that the algorithm can realize blind image restoration better.

李三峰、王世杰、罗立民

电子技术应用

独立分量分析非负分解图像盲复原

Independent Component Analysis isnonnegative decompositionblind image restoration

李三峰,王世杰,罗立民.基于独立分量分析的数字图像盲复原方法研究[EB/OL].(2009-03-18)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200903-681.点此复制

评论