负二项回归模型下双参数估计的有效性研究
Efficiency of the Two-Parameter Estimator in the Negative Binomial Regression Model
在实际应用中分析计数数据时经常会用到负二项分布(NB)回归模型这一典型广义线性模型。复共线性问题的提出使得经典的极大似然估计方法因为均方误差(MSE)过大而失去意义,为了解决这一问题本文提出了一种新的双参数估计。该估计是一个包含了极大似然估计(MLE)、岭估计(RE)以及作为二者特殊情况的刘估计(LS)。在对新的估计的进一步研究中,本文推导出了新估计在渐进MSE上的一些优良性质以及其优于MLE的充分必要条件,同时也对新的约束估计和新的双参数估计进行了基于均方误差矩阵(MSEM)下的对比。此外,本文还针对偏置参数的选取问题进行了讨论。同样,在文章最后进行了蒙特卡洛模拟并附上模拟的结果来佐证文中得出的一些结论。?????
he negative binomial (NB) regression model,a typical generalized linear regression models,is very popular in applied research when analyzing count data. A new two-parameter estimator is proposed in order to solve the problem of an inflated mean square error (MSE) of the classical maximum likelihood (ML) method in the presence of multicollinearity. The proposed two-parameter estimator is a general estimator which includes the ML estimator, the ridge estimator and the Liu estimator as special cases. Some properties on the asymptotic MSE are derived and the necessary and sufficient conditions for the superiority of the new two-parameter estimator over the ML estimator are done in the mean square error matrix (MSEM) sense . Furthermore, selections of the biasing parameters are discussed and a Monte Carlo simulation study is given to illustratesome of the theoretical results.
黎雅莲、姚程
数学
负二项回归极大似然估计双参数估计带约束双参数估计复共线性
Negative binomial regressionMaximum likelihoodTwo-parameter estimatorRestricted two-parameter estimatorMulticollinearity
黎雅莲,姚程.负二项回归模型下双参数估计的有效性研究[EB/OL].(2016-04-20)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/201604-250.点此复制
评论