基于GK-SVR和自适应NSGA-II的涡轮盘锻件工艺参数多目标优化方法
Multi-objective Optimization Method of Turbine Disk Forging Process Parameters Based on GK-SVR and Adaptive NSGA-II
锻造成形工艺直接决定了涡轮盘锻件的质量,不合适的工艺参数将导致涡轮盘锻件质量不稳定甚至不合格。为解决这个问题,提出一种基于高斯核支持向量回归(GK-SVR)和自适应NSGA-II优化算法(ANSGA-II)的涡轮盘锻件工艺参数多目标优化方法,其中利用GK-SVR建立面向涡轮盘锻件质量预测值与设定目标值偏差最小的多目标适应度函数,并采用ANSGA-II对所建立的多目标优化模型进行迭代寻优,找寻最优工艺参数集。该方法通过在SVR中引入高斯核提高了对高维少样本涡轮盘锻件的预测精度;同时采用拉丁超立方设计初始化种群和基于余弦概率进行父代个体选择,有效增强种群的多样性,并设计了融合模拟二进制交叉算子和Lévy分布交叉算子的自适应交叉算子,能较好地平衡全局搜索和局部搜索能力以更好地找到全局最优解。通过实验验证了GK-SVR和ANSGA-II算法的有效性与优越性,并通过逼近理想解排序法(TOPSIS)完成Pareto非劣解集优劣性能的排序,实现最优锻造工艺参数组合的获取。
Forging forming process directly determines the quality of turbine disk forgings, unsuitable process parameters will lead to unstable or even unqualified quality of turbine disk forgings. To solve this problem, a multi-objective optimization method for turbine disk forging process parameters based on Gaussian kernel support vector regression (GK-SVR) and adaptive NSGA-II optimization algorithm (ANSGA-II) is proposed, in which a multi-objective fitness function is established using GK-SVR for minimizing the deviation of the predicted turbine disk forging quality from the set target value, and ANSGA-II is used to iteratively find the optimal set of process parameters for the established multi-objective optimization model. The method improves the prediction accuracy of high-dimensional few-sample turbine disk forgings by introducing Gaussian kernel in SVR; meanwhile, it adopts Latin hypercube design for initializing the population and cosine probability-based parent individual selection to effectively enhance the population diversity, and designs an adaptive crossover operator that integrates simulated binary crossover operator and Lévy distribution crossover operator, which can better balance the global search and local search ability to better find the global optimal solution. The effectiveness and superiority of GK-SVR and ANSGA-II algorithms are verified through experiments, and the ranking of the superior and inferior performance of Pareto\'s non-inferior solution set is accomplished by approximating the ideal solution ranking method (TOPSIS) to achieve the acquisition of the optimal forging process parameter combinations.
吴兵华、周涵、孙朝远、刘洋、朱宽俊、谢静、鄢萍
金属压力加工
涡轮盘锻件工艺参数多目标优化支持向量回归快速非支配排序遗传算法
turbine disk forgingprocess parametermulti-objective optimizationsupport vector regressionnon-dominated sorting genetic algorithm-II
吴兵华,周涵,孙朝远,刘洋,朱宽俊,谢静,鄢萍.基于GK-SVR和自适应NSGA-II的涡轮盘锻件工艺参数多目标优化方法[EB/OL].(2023-05-30)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202305-246.点此复制
评论