|国家预印本平台
首页|Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD Detection Using Text-image Models

Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD Detection Using Text-image Models

Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD Detection Using Text-image Models

来源:Arxiv_logoArxiv
英文摘要

We focus on the challenge of out-of-distribution (OOD) detection in deep learning models, a crucial aspect in ensuring reliability. Despite considerable effort, the problem remains significantly challenging in deep learning models due to their propensity to output over-confident predictions for OOD inputs. We propose a novel one-class open-set OOD detector that leverages text-image pre-trained models in a zero-shot fashion and incorporates various descriptions of in-domain and OOD. Our approach is designed to detect anything not in-domain and offers the flexibility to detect a wide variety of OOD, defined via fine- or coarse-grained labels, or even in natural language. We evaluate our approach on challenging benchmarks including large-scale datasets containing fine-grained, semantically similar classes, distributionally shifted images, and multi-object images containing a mixture of in-domain and OOD objects. Our method shows superior performance over previous methods on all benchmarks. Code is available at https://github.com/gyhandy/One-Class-Anything

Andrew Gallagher、Laurent Itti、Yunhao Ge、Jie Ren、Kaifeng Chen、Balaji Lakshminarayanan、Jiaping Zhao

计算技术、计算机技术

Andrew Gallagher,Laurent Itti,Yunhao Ge,Jie Ren,Kaifeng Chen,Balaji Lakshminarayanan,Jiaping Zhao.Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD Detection Using Text-image Models[EB/OL].(2023-05-26)[2025-08-10].https://arxiv.org/abs/2305.17207.点此复制

评论