一种改进的基于PCA的人脸超分辨率算法
n Improved Face Hallucination Based PCA
在本文中,提出了一种基于CSGT和PCA的人脸超分辨率算法。首先,将输入人脸图像和训练库中的所有人脸图像进行CSGT,利用局部极值准则提取出人脸特征,然后在这些特征的基础上计算输入人脸图像和训练库中的所有人脸图像的欧式距离,根据欧式距离挑选出最佳的训练库。实验结果表明,该方法可以得到最佳的训练库,并得到较高质量的人脸超分辨率图像。
In this paper, based on Circularly Symmetrical Gabor Transform (CSGT) and Principal Component Analysis (PCA), we propose a face hallucination approach. In this approach, all of the face images (both input face image and original training database) are transformed through CSGT at first and then local extremes criteria is utilized to extract the intrinsic features of the faces. Based on these features, we calculate Euclidean distances between the input face image and every image in the original training database, and then Euclidean distances are used as criteria to choose the reasonable training database. Once the training database is chosen, we use PCA to hallucinate the input face image as the linear combination of the chosen training images. Experimental results show that our approach can choose training database automatically according to the input face image and get high quality super-resolution image.
褚金玉、王晓玲、乔建平、刘琚
计算技术、计算机技术
人脸超分辨率,CSGTPCA人脸训练库
Face Hallucination PCA CSGT Training Database
褚金玉,王晓玲,乔建平,刘琚.一种改进的基于PCA的人脸超分辨率算法[EB/OL].(2008-04-21)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200804-726.点此复制
评论