Conservative and entropy stable solid wall boundary conditions for the compressible Navier-Stokes equations: Adiabatic wall and heat entropy transfer
Conservative and entropy stable solid wall boundary conditions for the compressible Navier-Stokes equations: Adiabatic wall and heat entropy transfer
We present a novel technique for the imposition of non-linear entropy conservative and entropy stable solid wall boundary conditions for the compressible Navier-Stokes equations in the presence of an adiabatic wall, or a wall with a prescribed heat entropy flow. The procedure relies on the formalism and mimetic properties of diagonal-norm, summation-by-parts, and simultaneous-approximation-term operators, and is a generalization of previous works on discontinuous interface coupling [1] and solid wall boundary conditions [2]. Using the method of lines, a semi-discrete entropy estimate for the entire domain is obtained when the proposed numerical imposition of boundary conditions are coupled with an entropy-conservative or entropy-stable discrete interior operator. The resulting estimate mimics the global entropy estimate obtained at the continuous level. The boundary data at the wall are weakly imposed using a penalty flux approach and a simultaneous-approximation-term technique for both the conservative variables and the gradient of the entropy variables. Discontinuous spectral collocation operators (mass lumped nodal discontinuous Galerkin operators), on high-order unstructured grids, are used for the purpose of demonstrating the robustness and efficacy of the new procedure for weakly enforcing boundary conditions. Numerical simulations confirm the non-linear stability of the proposed technique, with applications to three-dimensional subsonic and supersonic flows. The procedure described is compatible with any diagonal-norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction schemes.
Matteo Parsani、Diego B. Rojas、Mark H. Carpenter、David C. Del Rey Fernandez、Stefano Zampini、Lisandro Dalcin
力学航空航天技术
Matteo Parsani,Diego B. Rojas,Mark H. Carpenter,David C. Del Rey Fernandez,Stefano Zampini,Lisandro Dalcin.Conservative and entropy stable solid wall boundary conditions for the compressible Navier-Stokes equations: Adiabatic wall and heat entropy transfer[EB/OL].(2018-12-29)[2025-08-02].https://arxiv.org/abs/1812.11403.点此复制
评论