一个基于Burst检测的电影推荐算法
Film Recommendation Algorithm Based on Burst Detection
推荐算法是电影个性化推荐系统的核心,单一的算法存在各种缺点,如何能综合使用各种推荐算法使得电影个性化推荐系统更加完善,是电影推荐的核心问题。本文结合基于内容个性化推荐算法和协同过滤个性化推荐算法提出一种混合推荐算法。首先,根据用户-电影历史行为数据和电影属性信息建立用户初始兴趣模型;然后将Kleinberg提出的Burst检测技术运用到挖掘用户最新兴趣上来,根据最新兴趣对用户初始模型改进形成用户综合兴趣模型。第三,采用凝聚型层次聚类基于用户综合兴趣模型对用户进行聚类。最后,根据聚类结果,以类为单位对各类中用户尚未评分的电影进行预测评分,推荐其预测评分最高的若干电影。
he recommendation algorithm research is crucial to the whole film recommendation system . But single recommendation algorithm has various drawbacks. How to use different recommendation alorithms to make the film personalized recommendation system more perfect, is the core issue of film recommendatin.The author puts forward a hybrid recommendation algorithm, which takes content-based recommendation algorithm and collaborative filtering recommendation algorithm into account. Firstly, according to the user-movie historical data and movie information, establish the initial user interest model. Then use the Burst Detection algorithm to discover user's new interests and build the user comprehensive interest model. Thirdly, use the agglomerative hierarchical clustering to cluster the users based on the comprehensive interest model. Last, use class as a unit to predict the score and the highest score movies turn into recommendation.
史磊、朱郑州
计算技术、计算机技术
个性化推荐协同过滤Burst检测层次聚类电影推荐
Personalized Recommendationollaborative FilteringBurst DetectionHierarchical ClusteringFilm Recommendation
史磊,朱郑州.一个基于Burst检测的电影推荐算法[EB/OL].(2017-05-04)[2025-06-06].http://www.paper.edu.cn/releasepaper/content/201705-289.点此复制
评论