|国家预印本平台
首页|基于混沌优化的板形信号模式识别的研究

基于混沌优化的板形信号模式识别的研究

Research on Pattern Recognition of Shape Signal based on chaotic optimization

中文摘要英文摘要

通过对板形信号和板形识别数学模型的分析,针对传统的基于最小二乘法板形信号模式识别方法抗干扰能力差、精度低,神经网络识别方法在实际应用中效果不佳的问题,将板形信号模式识别过程转化为函数的优化问题,用模糊识别理论与混沌优化方法对该函数进行优化求解。为提高板形信号识别的精度和速度,以勒让德正交多项式作为板形缺陷的基模式,采用模糊识别作为初步识别,用以降低混沌优化的求解维数和缩小搜索空间,借助梯度下降法的思想对混沌优化的局部搜索能力进行改进,从而进一步提高了混沌优化对板形信号模式识别的识别速度和精度。

By the analysis of shape signal and mathematical model of shape recognition, the traditional least squares shape pattern recognition method was of poor performance and low precision, the neural network recognition method also had poor results in practical application. To improve the accuracy and speed of shape pattern recognition, we make it to be a function optimization problem and use Chaos theory and fuzzy identification optimization method to solve the problem. Fuzzy recognition based on Legendre polynomial as a preliminary identification of the optimal solution to reduce the dimension of chaos and narrow the search space. The gradient descent algorithm is used to improve the chaos optimization algorithm. And the chaos optimization results are further improved. Simulation results show good performance

郑德忠、王志勇

工程基础科学计算技术、计算机技术自动化基础理论

板形信号模式识别模糊理论混沌优化

Shape signalPattern recognitionFuzzy theoryhaotic optimization

郑德忠,王志勇.基于混沌优化的板形信号模式识别的研究[EB/OL].(2010-02-04)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/201002-207.点此复制

评论