首页|Pogorelov type estimates for a class of Hessian quotient equations in
Lorentz-Minkowski space $\mathbb{R}^{n+1}_{1}$
Pogorelov type estimates for a class of Hessian quotient equations in Lorentz-Minkowski space $\mathbb{R}^{n+1}_{1}$
Pogorelov type estimates for a class of Hessian quotient equations in Lorentz-Minkowski space $\mathbb{R}^{n+1}_{1}$
Let $\Omega$ be a bounded domain (with smooth boundary) on the hyperbolic plane $\mathscr{H}^{n}(1)$, of center at origin and radius $1$, in the $(n+1)$-dimensional Lorentz-Minkowski space $\mathbb{R}^{n+1}_{1}$. In this paper, by using a priori estimates, we can establish Pogorelov type estimates of $k$-convex solutions to a class of Hessian quotient equations defined over $\Omega\subset\mathscr{H}^{n}(1)$ and with the vanishing Dirichlet boundary condition.
Yating Zhao、Jing Mao、Chenyang Liu
数学
Yating Zhao,Jing Mao,Chenyang Liu.Pogorelov type estimates for a class of Hessian quotient equations in Lorentz-Minkowski space $\mathbb{R}^{n+1}_{1}$[EB/OL].(2022-01-21)[2025-07-16].https://arxiv.org/abs/2201.08644.点此复制
评论