$\mathbb{R}^2$中带临界指数增长的拟线性Choquard方程基态解的存在性和集中性
Existence and concentration of ground state solutions for a quasilinear Choquard equation with critical exponential growth in $\mathbb{R}^2$
本文我们研究下列带有扰动的拟线性Choquard方程 \begin{equation*} -\varepsilon^2\Delta u+V(x)u-\varepsilon^2\Delta (u^2)u=\varepsilon^{\mu-2}\big(\frac{1}{|x|^\mu}*F(u)\big)f(u),\quad x\in \ \mathbb{R}^2, \end{equation*} 其中$\varepsilon>0$是小的参数, $\frac{1}{|x|^\mu}$是里斯位势, $0<\mu <2$, $*$是$\mathbb{R}^2$中的卷积, $V(x)\in C(\mathbb{R}^2, (0,+\infty))$, $F(u)$是$f(u)$的原函数, $f$具有关于Trudinger–Moser不等式的临界指数增长. 在$V$满足一定的条件下, 我们运用变分法和山路定理, 得到了上述问题基态解的存在性和集中性.
In this paper, we study the following perturbed quasilinear Choquard equation \begin{equation*} -\varepsilon^2\Delta u+V(x)u-\varepsilon^2\Delta (u^2)u=\varepsilon^{\mu-2}\big(\frac{1}{|x|^\mu}*F(u)\big)f(u),\quad x\in \ \mathbb{R}^2, \end{equation*} where $\varepsilon>0$ is a small parameter, $\frac{1}{|x|^\mu}$ with $0<\mu <2$ is the Riesz potential, $*$ is the convolution in $\mathbb{R}^2$, $V(x)\in C(\mathbb{R}^2, (0,+\infty))$, $F(u)$ is the primitive function of $f(u)$ and $f$ has critical exponential growth with respect to the Trudinger–Moser inequality. When $V$ verifies some assumptions, we apply variational methods and mountain pass theorem to obtain the existence and concentration behavior of positive ground state solutions for the above equation.
陈文晶、李玉梅
数学
拟线性Choquard方程临界指数增长Trudinger–Moser不等式
Quasilinear Choquard equationCritical exponential growthTrudinger–Moser inequality
陈文晶,李玉梅.$\mathbb{R}^2$中带临界指数增长的拟线性Choquard方程基态解的存在性和集中性[EB/OL].(2024-05-31)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/202405-174.点此复制
评论