|国家预印本平台
首页|基于丰富多尺度稳定化方法的Navier-Stokes方程有限体积迭代算法研究

基于丰富多尺度稳定化方法的Navier-Stokes方程有限体积迭代算法研究

nalysis and comparison of stabilized multiscale finite volume iterative schemes for the steady incompressible Navier-Stokes equations

中文摘要英文摘要

在本文中,提出了三种基于丰富多尺度的稳定不可压缩Navier-Stokes方程的有限体积迭代算法,在粘性系数的不同要求下,我们给出了这些数值格式下的稳定性和收敛性结果。理论结果展示说明Stokes和Newton迭代在一些强唯一性条件下是稳定的,然而Oseen迭代是无条件稳定的并且在唯一性条件下收敛。并且我们发现牛顿迭代是关于迭代步长呈指数级收敛。最后,数值实验将会验证我们所得到的的理论结果并分别展示有限体积方法在这三种迭代格式下的表现。

In this paper, three finite volume iterative schemes for the steady incompressible Navier-Stokes equations are provided based on the multiscale enrichment method.Under different restriction on the viscosity parameter, the stability and convergence results of the considered numerical schemes are established. Theoretical findings show that the Stokes and Newton iterations are stable under some strong uniqueness conditions, while the Oseen iteration is unconditionally stable and convergent under the uniqueness condition. Furthermore, the Newton iteration is exponential convergence with respect to the iterative step. Numerical examples are presented to verify the established theoretical findings and show the performances of three iterative finite volume methods.

陈传军、江瑜磊

数学力学

计算数学 丰富多尺度有限体积法Navier-Stokes方程稳定性

omputational mathematics Multiscale finite volume method Navier-Stokes equations stability

陈传军,江瑜磊.基于丰富多尺度稳定化方法的Navier-Stokes方程有限体积迭代算法研究[EB/OL].(2023-04-19)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202304-275.点此复制

评论