基于LSTM结构的文本情感分析
ext Sentiment Analysis Based on LSTM Structure
随着互联网的迅猛发展,越来越多的用户在互联网上发表着自己的评论,这些评论中包含着很多有价值的信息,而这些对于厂家进一步了解顾客意见,提高产品质量有着重要意义,但是传统的依靠人工进行问卷调查的手段越来越无法满足市场竞争的需要。因此如何从大量文本中获取有价值的信息成为了一项重要的研究课题。本文利用LSTM结构搭建了一种文本情感分析模型,对中文文本进行情感多分类;同时提出了一种伪梯度下降的方法进行模型参数调整,数值实验结果表明这种参数调整方法可以使模型在较短的时间内达到较高的正确率。
With the rapid development of Internet, more and more users are posting their own comments on the Internet. These comments contain a lot of valuable information, which are important for manufacturers to further understand customers\' opinions and to improve product quality. However, traditional means relying on artificial questionnaire survey are unable to meet the needs of market competition. Hence, it has been a significant research subject to extract valuable information from text ocean. In this paper, based on LSTM structure, we establish text sentiment analysis model to classify Chinese text sentiment. We also propose a pseudo gradient descent techniqueText Sentiment Analysis Based on LSTM Structure to adjust those hyper-parameters in the model. Numerical experiments show that the pseudo gradient descent technique can achieve high accuracy in shorter time.
张玉环、钱江
计算技术、计算机技术
情感分析LSTM伪梯度下降法
sentiment analysisLSTMpseudo gradient descent technique
张玉环,钱江.基于LSTM结构的文本情感分析[EB/OL].(2017-12-25)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201712-296.点此复制
评论