基于双路径网络的自闭症预测框架
n Autistic Prediction Framework Based on Dual Path Network
基于双路径网络提出一个用于自闭症预测的简单,高度模块化的框架。通过堆叠多个聚集一组包含相同拓扑结构的转换的基本块,框架对人体眼球运动信息进行自动特征提取。整合残差路径和密集连接路径,对各层次特征进行重用并探索新特征。为了处理不均衡数据,提出合成过采样算法并改变代价函数形式。通过替换激活函数,调整激活层与批量归一化层的顺序提升分类准确率,加快收敛速度。改进的双路径网络参数效率更高,计算成本更低,内存消耗更低。实验结果表明,与现有的自闭症预测模型相比,基于双路径网络的自闭症预测框架具有更好的预测效果和优化性能。
simple, highly modularized framework for autistic prediction is proposed based on dual path network. By stacking several building blocks that aggregate a set of transformations with the same topology, the framework extracts human eye movement information automatically. Residual path and densely connected path are integrated to reuse features at different levels and explore new features. Synthetic oversampling technique is proposed and the form of cost function ischanged to deal with the imbalanced data. By replacing the activation function and adjusting the order of the active layers and the batch normalization layers, the classification accuracy is further improved and the convergence speed is accelerated. The improved dual path network enjoys higher parameter efficiency, lower computational cost and lower memory consumption. Experimental results show that compared with the existing autistic prediction model, the autistic prediction framework based on dual path network has better prediction and optimization performance.
刘晓鸿、柳毅恒
计算技术、计算机技术自动化技术、自动化技术设备
人工智能双路径网络自闭症
rtificial Intelligenceual Path NetworkAutism
刘晓鸿,柳毅恒.基于双路径网络的自闭症预测框架[EB/OL].(2017-12-21)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201712-264.点此复制
评论